A physiological increase in insulin suppresses muscle‐specific ubiquitin ligase gene activation in fetal sheep with sustained hypoglycemia
نویسندگان
چکیده
Decreased glucose transfer to the fetus is characteristic of pregnancies complicated by maternal under nutrition and placental insufficiency. Chronic experimental restriction of glucose transfer to the sheep fetus for the final 40% of gestation with a maternal insulin infusion (HG fetuses) results in fetal hypoglycemia, hypoinsulinemia, and decreased rates of fetal growth and protein accretion compared to controls (CON). Lower rates of fetal protein accretion are due to increased fetal protein breakdown and not decreased protein synthesis. However, the specific skeletal muscle pathways responsible for increased protein breakdown have not been determined. Nor has it been determined if low fetal glucose or insulin concentrations are more important for regulating these skeletal muscle protein breakdown pathways. We tested whether chronic restriction of glucose transfer to the fetus increased the ubiquitin-proteosome pathway or autophagy-lysosome pathway in fetal sheep skeletal muscle and found no evidence for an increase in the autophagy-lysosome pathway. However, HG fetuses had increase mRNA expression of MaFBx1 (twofold, P < 0.01) and a trend for increased mRNA expression of MuRF1 (P = 0.08) compared to CON. A subset of chronically hypoglycemic fetuses received an isoglycemic insulin infusion for the final 7 days of the maternal insulin infusion (HG + INS fetuses) and had MaFBx1 and MuRF1 mRNA concentrations similar to CON fetuses. These results demonstrate that fetuses exposed to sustained hypoglycemia have decreased protein accretion due to activation of the skeletal muscle ubiquitin-proteosome pathway and that a fetal hyperinsulinemic clamp can suppress this pathway even in the context of continued hypoglycemia.
منابع مشابه
A physiological increase in insulin suppresses gluconeogenic gene activation in fetal sheep with sustained hypoglycemia.
Reduced maternal glucose supply to the fetus and resulting fetal hypoglycemia and hypoinsulinemia activate fetal glucose production as a means to maintain cellular glucose uptake. However, this early activation of fetal glucose production may be accompanied by hepatic insulin resistance. We tested the capacity of a physiological increase in insulin to suppress fetal hepatic gluconeogenic gene a...
متن کاملEffects of chronic hypoglycemia and euglycemic correction on lysine metabolism in fetal sheep.
In this study, we determined rates of lysine metabolism in fetal sheep during chronic hypoglycemia and following euglycemic recovery and compared results with normal, age-matched euglycemic control fetuses to explain the adaptive response of protein metabolism to low glucose concentrations. Restriction of the maternal glucose supply to the fetus lowered the net rates of fetal (umbilical) glucos...
متن کاملTime-dependent and tissue-specific effects of circulating glucose on fetal ovine glucose transporters.
To determine the cellular adaptations to fetal hyperglycemia and hypoglycemia, we examined the time-dependent effects on basal (GLUT-1 and GLUT-3) and insulin-responsive (GLUT-4) glucose transporter proteins by quantitative Western blot analysis in fetal ovine insulin-insensitive (brain and liver) and insulin-sensitive (myocardium, skeletal muscle, and adipose) tissues. Maternal glucose infusio...
متن کاملThe Effect of Curcumin on GLUT4 Gene Expression as a Diabetic Resistance Marker in C2C12 Myoblast Cells
Objective: Adipocyte and skeletal muscle are important tissues which contribute the development and progression of metabolic disorder. Insulin has a major regulatory function on glucose metabolism in these tissues by redistributing glucose transporter (GLUT4) from intracellular vesicles to the cell surface. Today, due to the side effects of chemical medications attendance to herbal medicines is...
متن کاملAMP-activated protein kinase agonists increase mRNA content of the muscle-specific ubiquitin ligases MAFbx and MuRF1 in C2C12 cells.
The hypothesis of the present study was that exposure of differentiated muscle cells to agonists of the AMP-activated protein kinase (AMPK) would increase the mRNA content of the muscle-specific ubiquitin ligases muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MuRF1). C(2)C(12) cells were incubated with incremental doses of 5-aminoimidazol-4-carboximide ribonucleoside (AICAR) or metformi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2014